Selasa, 28 Januari 2014

Hydrotest


A hydrostatic test is a way in which pressure vessels such as pipelines, plumbing, gas cylinders, boilers and fuel tanks can be tested for strength and leaks. The test involves filling the vessel or pipe system with a liquid, usually water, which may be dyed to aid in visual leak detection, and pressurization of the vessel to the specified test pressure. Pressure tightness can be tested by shutting off the supply valve and observing whether there is a pressure loss. The location of a leak can be visually identified more easily if the water contains a colorant. 

it is essential to identify the limits of the test process and obtainable results. There are several types of flaws that can be detected by hydrostatic testing, such as:
Existing flaws in the material,
Stress Corrosion Cracking (SCC) and actual mechanical properties of the pipe,
Active corrosion cells, and
Localized hard spots that may cause failure in the presence of hydrogen.

When a pipeline is designed to operate at a certain maximum operating pressure (MOP), it must be tested to ensure that it is structurally sound and can withstand the internal pressure before being put into service. Generally, gas pipelines are hydrotested by filling the test section of pipe with water and pumping the pressure up to a value that is higher than maximum allowable operating pressure (MAOP) and holding the pressure for a period of four to eight hours.


sumber gambar  : http://en.wikipedia.org/wiki/File:Water_jacket_test_diagram.jpg

Hydrotesting of pipes, pipelines and vessels is performed to expose defective materials that have missed prior detection, ensure that any remaining defects are insignificant enough to allow operation at design pressures, expose possible leaks and serve as a final validation of the integrity of the constructed system. ASME B31.3 requires this testing to ensure tightness and strength.
Buried high pressure oil and gas pipelines are tested for strength by pressurizing them to at least 125% of their maximum operating pressure (MAOP) at any point along their length. Since many long distance transmission pipelines are designed to have a steel hoop stress of 80% of specified minimum yield (SMYS) at MAOP, this means that the steel is stressed to SMYS and above during the testing, and test sections must be selected to ensure that excessive plastic deformation does not occur. Test pressures need not exceed a value that would produce a stress higher than yield stress at test temperature. ASME B31.3 section 345.4.2 (c)Other codes require a more onerous approach. BS PD 8010-2 requires testing to 150% of the design pressure - which should not be less than the MAOP plus surge and other incidental effects that will occur during normal operation.
Leak testing is performed by balancing changes in the measured pressure in the test section against the theoretical pressure changes calculated from changes in the measured temperature of the test section. Australian standard AS2885.5 "Pipelines—Gas and liquid petroleum: Part 5: Field pressure testing" gives an excellent explanation of the factors involved.

sumber : 
http://pipelineandgasjournal.com/pipeline-hydro-test-pressure-determination?page=show



Sabtu, 25 Januari 2014

Hot Tap :)

What is a Hot Tap and why it is made?

Hot Taps or Hot Tapping is the ability to safely tie into a pressurized system, by drilling or cutting, while it is on stream and under pressure.
Typical connections consist:
  • Tapping fittings like Weldolet®, Reinforced Branch or Split Tee.
    Split Tees often to be used as branch and main pipe has the same diameters.
  • Isolation Valve like gate or Ball Valve.
  • Hot tapping machine which includes the cutter, and housing.
Mechanical fittings may be used for making hot taps on pipelines and mains provided they are designed for the operating pressure of the pipeline or main, and are suitable for the purpose.
  • Design: ANSI B31.1, B31.3, ANSI B31.4 & B31.8, ASME Sec. VIII Div.1 & 2
  • Fabrication: ASME Sec. VIII Div.1
  • Welding: ASME Sec. IX
  • NDT: ASME Sec. V
There are many reasons to made a Hot Tap. While is preferred to install nozzles during a turnaround, installing a nozzle with equipment in operation is sometimes advantageous, especially if it averts a costly shut down.

Remarks before made a Hot Tap

  • A hot tap shall not be considered a routine procedure, but shall be used only when there is no practical alternative.
  • Hot Taps shall be installed by trained and experienced crews.
  • It should be noted that hot tapping of sour gas lines presents special health and metallurgical concerns and shall be done only to written operating company approved plans.
  • For each hottap shall be ensured that the pipe that is drilled or sawed has sufficient wall thickness, which can be measured with ultrasonic thickness gauges. The existing pipe wall thickness (actual) needs to be at least equal to the required thickness for pressure plus a reasonable thickness allowance for welding. If the actual thickness is barely more than that required for pressure, then loss of containment at the weld pool is a risk.
  • Welding on in-service pipelines requires weld procedure development and qualification, as well as a highly trained workforce to ensure integrity of welds when pipelines are operating at full pressure and under full flow conditions.
.

Sumber : http://www.wermac.org/specials/hottap.html



How to instal offshore pipeline?



Laying pipe on the seafloor can pose a number of challenges, especially if the water is deep. There are three main ways that subsea pipe is laid -- S-lay, J-lay and tow-in -- and the pipelay vessel is integral to the success of the installation.

Buoyancy affects the pipelay process, both in positive and negative ways. In the water, the pipe weighs less if it is filled with air, which puts less stress on the pipelay barge. But once in place on the sea bed, the pipe requires a downward force to remain in place. This can be provided by the weight of the oil passing through the pipeline, but gas does not weigh enough to keep the pipe from drifting across the seafloor. In shallow-water scenarios, concrete is poured over the pipe to keep it in place, while in deepwater situations, the amount of insulation and the thickness required to ward of hydrostatic pressure is usually enough to keep the line in place.

Tow-In Pipeline Installation
While jumpers are typically short enough to be installed in sections by ROVs, flowlines and pipelines are usually long enough to require a different type of installation, whether that is tow-in, S-lay or J-lay.

Tow-in installation is just what it sounds like; here, the pipe is suspended in the water via buoyancy modules, and one or two tug boats tow the pipe into place. Once on location, the buoyancy modules are removed or flooded with water, and the pipe floats to the seafloor.

There are four main forms of tow-in pipeline installation. The first, the surface tow involves towing the pipeline on top of the water. In this method, a tug tows the pipe on top of the water, and buoyancy modules help to keep it on the water's surface.

Using less buoyancy modules than the surface tow, the mid-depth tow uses the forward speed of the tug boat to keep the pipeline at a submerged level. Once the forward motion has stopped, the pipeline settles to the seafloor.

Off-bottom tow uses buoyancy modules and chains for added weight, working against each other to keep the pipe just above the sea bed. When on location, the buoyancy modules are removed, and the pipe settles to the seafloor.

Lastly, the bottom tow drags the pipe along the sea bed, using no buoyancy modules. Only performed in shallow-water installations, the sea floor must be soft and flat for this type of installation.

S-Lay Pipeline Installation
When performing S-lay pipeline installation, pipe is eased off the stern of the vessel as the boat moves forward. The pipe curves downward from the stern through the water until it reaches the "touchdown point," or its final destination on the seafloor. As more pipe is welded in the line and eased off the boat, the pipe forms the shape of an "S" in the water.

Stingers, measuring up to 300 feet (91 meters) long, extend from the stern to support the pipe as it is moved into the water, as well as control the curvature of the installation. Some pipelay barges have adjustable stingers, which can be shortened or lengthened according to the water depth.

Proper tension is integral during the S-lay process, which is maintained via tensioning rollers and a controlled forward thrust, keeping the pipe from buckling. S-lay can be performed in waters up to 6,500 feet (1,981 meters) deep, and as many as 4 miles (6 kilometers) a day of pipe can be installed in this manner.

J-Lay Pipeline Installation
Overcoming some of the obstacles of S-lay installation, J-lay pipeline installation puts less stress on the pipeline by inserting the pipeline in an almost vertical position. Here, pipe is lifted via a tall tower on the boat, and inserted into the sea. Unlike the double curvature obtained in S-lay, the pipe only curves once in J-lay installation, taking on the shape of a "J" under the water.

The reduced stress on the pipe allows J-lay to work in deeper water depths. Additionally, the J-lay pipeline can withstand more motion and underwater currents than pipe being installed in the S-lay fashion.

Types Of Pipelay Vessels
There are three main types of pipelay vessels. There are J-lay and S-lay barges that include a welding station and lifting crane on board. The 40- or 80-foot (12- or 24-meter) pipe sections are welded away from wind and water, in an enclosed environment. On these types of vessels, the pipe is laid one section at a time, in an assembly-line method.

On the other hand, reel barges contain a vertical or horizontal reel that the pipe is wrapped around. Reel barges are able to install both smaller diameter pipe and flexible pipe. Horizontal reel barges perform S-lay installation, while vertical reel barges can perform both S-lay and J-lay pipeline installation.

When using reel barges, the welding together of pipe sections is done onshore, reducing installation costs. Reeled pipe is lifted from the dock to the vessel, and the pipe is simply rolled out as installation is performed. Once all of the pipe on the reel has been installed, the vessel either returns to shore for another, or some reel barges are outfitted with cranes that can lift a new reel from a transport vessel and return the spent reel, which saves time and money.


Sources:
http://www.rigzone.com/training/insight.asp?insight_id=311&c_id=19

Pemilihan Material Pipa

Pipa yang digunakan dalam pipeline, terbuat dari material yang berbeda-beda. Material-material tersebut dipilih dengan menyesuaikan kebutuhan dari material yang akan dialirkan, tempat penginstalasian dan kualitas material. 

Untuk penginstalasian pipa yang dilakukan di bawah laut,berarti pipa harus mampu menahat tekanan tinggi serta mampu menahan korosi atau diberi proteksi korosi. Selain itu pipa yang digunakan pun harus memiliki permuakaan yang halus di dalamnya sehingga,aliran cairan yang akan dialirkan akan berjalan dengan baik. 

Sebelum penginstalasian perlu juga dipikirkan dengan baikmaterial-materialyang tahan terhadap beban lingkungan dan beban operasi yang akan terjadi. Selain itu,perlu diketahui juga kekuatan dari pipa,agar saat diinstalasi tidak terjadi kegagalan pada pipa terutama akibat pembengkokan saat instalasi. 

Untuk mengalirkan air,banyak digunakan pipa dengan material/jenis pipa PVC, Ductile iron pipe, dan HDPE pipe. 


Berikut ini merupakan reference yang dapat digunakan dalam memilih metrial pipa pipeline.

  • API 5L – Specification for Line Pipe
  • API RP 17B – Recommended practice for flexible pipe
  • ASME B31.3 – Chemical plant and petroleum refinery piping
  • ASTM D 2992 – Practice for obtaining hydrostatic or pressure design basis for fiberglass pipe and fittings
  • DnV RP B201 – Metallic materials in drilling, production, and process systems
Sumber :
http://www.standard.no/PageFiles/1174/M-DP-001r1.pdf
http://www.all-about-pipe.com/materials.html

Jumat, 24 Januari 2014

Tugas 1 Pipa Bawah Laut

Blog ini merupakan salah satu tugas dari mata kuliah Pipa Bawah Laut yang dikerjakan oleh :

Cindy Gloria 15510027
Teknik Kelautan- Institut Teknologi Bandung

Semoga tugas ini bermanfaat bagi pembacanya :D

Website teknik kelautan dapat diakses ( jika teman-teman tertarik lebih lanjut mengenai teknik
kelautan ITB) :

www. ocean.itb.ac.id